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University of California, Berkeley
Physics 105 Fall 2000 Section 2 (Strovink)

SOLUTION TO PROBLEM SET 10
Solutions by T. Bunn

Reading:
105 Notes 12.1-12.4
Hand & Finch 9.1-9.6

1. and 2. (double credit problem)
The Foucault gyrocompass is a gyroscope that
eventually, taking advantage of frictional damp-
ing, points to true (not magnetic) north. Thus
it is an essential guidance system component.

The gyrocompass may be modeled as a thin disk
spinning with angular frequency ω0 about its
symmetry axis z′′. This axis can move freely
in the horizontal (North-South-East-West) plane
only. As exhibited in the following diagrams, the
z′′ axis makes an angle α(t) with North. The gy-
rocompass is located at colatitude θ on an earth
spinning with angular frequency Ω.

Assuming that ω0 � Ω and ω0 � α̇, prove that
α(t) oscillates about α = 0 provided that α� 1.
Find the angular frequency of oscillation. Note
that friction in the bearings will eventually damp
out this oscillation, enabling the gyrocompass to
point to true north, as defined by the earth’s
axis of rotation.

You may find the following hints useful:

• Work the problem in the body (′′) system. This
system is obviously not the same as the fixed (′)
system. It is also not the same as the unprimed
system, which is the North-South-East-West sys-
tem attached to the earth. Using Euler’s equa-
tions would require knowing the torque from the
bearings, evaluated in the body system. Since
this torque is not known a priori, Euler’s equa-
tions are not useful here.

• Write ωx′′ , ωy′′ , and ωz′′ in terms of Ω, α, α̇,
and θ.

• To get the relationship between the torque N′

applied by the bearings and the angular momen-
tum L′′, first write N′ = dL′/dt (taking advan-
tage of the fact that the (′) system is inertial.)
Then transform L′ to the ′′ system.

• When evaluating L, remember to neglect terms
that are smaller by a factor Ω/ω0 than the lead-
ing terms.
Solution:
One thing that is certainly going to prove useful
is the angular velocity vector of the gyroscope.
It is the sum of three parts: the rotation �ω0

about the gyroscope axis; the rate of change of
the gyroscope axis direction, which is equal to
α̇, and which points in the x̂′′ direction; and the
rotation of the earth, �Ω. In the ′′ coordinate
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system, these all add up to

�ω = x̂′′(α̇+Ωcos θ) + ŷ′′Ωsin θ sinα
+ ẑ′′(ω0 +Ωsin θ cosα) .

From this we can find the angular momen-
tum vector in the ′′ system, since the iner-
tia tensor I is diagonal in this system: �L =
I1ωx′′ x̂′′ + I1ωy′′ ŷ′′ + I3ωz′′ ẑ′′.

We want to apply the rule �N = �̇L, but we can’t,
because the ′′ system is not inertial. We can,
however, say this:

�N =

(
d�L

dt

)
inertial

=

(
d�L

dt

)
rotating

+ �ω∗ × �L

where �ω∗ is the angular velocity vector of the
rotating coordinate system with respect to the
inertial coordinate system. Let’s consider the
′′ system as our rotating system. Then �ω∗ is
the sum of two components: the rotation of the
earth �Ω, and the rotation of the gyroscope axis,
α̇x̂′′. The components of �ω∗ in the ′′ system are

�ω∗ = x̂′′(α̇+Ωcos θ) + ŷ′′Ωsin θ sinα
+ ẑ′′Ωsin θ cosα .

Now, we’re interested in the motion of the gyro-
scope about the x′′ axis, so let’s write down the
x′′ component of our torque equation. There is
no torque in this direction (because the bearing
is frictionless), so

Nx′′ = 0 =

(
d�L′′

dt

)
x′′

+
(
�ω∗ × �L

)
x′′

(Note that (d�L′′/dt)x′′ means the x′′ component
of the time derivative of �L as seen in the ′′ sys-
tem.) We know the components of all of these
vectors in the ′′ system, so we can write this
expression explicitly:

0 = I1α̈+ I3Ωsin θ sinα(ω0 +Ωsin θ cosα)

− I1Ω2 sin2 θ sinα cosα .

To simplify this equation, note that Ω is much
smaller than any other frequency in the prob-
lem. So let’s drop all terms higher than first
order in Ω.

I1α̈+ I3ω0Ωsin θ sinα = 0

Approximate sinα ≈ α, and you get the har-
monic oscillator equation. α thus oscillates
about 0 (true north) with frequency γ, given by

γ2 =
I3
I1
ω0 Ωsin θ.

3.
Consider a coupled oscillator with two equal
masses m, each connected to fixed supports by
springs with unequal spring constants k and k′.
The two masses are connected to each other by
a spring with spring constant k.

Find its two natural angular frequencies.
Solution:
Let x1 and x2 be the displacements of the
two masses from their equilibrium positions.
Then the forces on the two masses are F1 =
−kx1−k(x1−x2), and F2 = −k′x2−k(x2−x1).
So the equations of motion are

mẍ1 + 2kx1 − kx2 = 0
mẍ2 − kx1 + (k + k′)x2 = 0

Guess that the solutions are periodic: xj =
Aje

iωt. Then we get a pair of linear equations
for A1 and A2:

(
2k −mω2

)
A1 − kA2 = 0

−kA1 +
(
k′ + k −mω2

)
A2 = 0

These equations only have nontrivial solutions if
the determinant of the coefficients is zero:

0 =

∣∣∣∣∣
2k −mω2 −k

−k k + k′ −mω2

∣∣∣∣∣
= m2ω4 −m(3k + k′)ω2 + k2 + 2kk′
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The solutions to this quadratic equation for ω2

are the two natural frequencies:

ω2 =
3k + k′ ±

√
5k2 − 2kk′ + k′2

2m

4.
Consider a double pendulum as exhibited in the
following diagram. The two pendula are of equal
lengths �, but the lower mass m2 � m1. Choose
θ1 and θ2, the angles between each string and
the vertical, as generalized coordinates.

(a)
Find the natural angular frequencies of oscilla-
tion.
Solution:
Let’s write a Lagrangian. The kinetic energy of
mass 1 is easy: T1 = 1

2m1l
2θ̇21. The potential

is easy too: V = −m1gl cos θ1 − m2gl(cos θ1 +
cos θ2). Now what about T2? Well, the position
of mass 2 has x, y coordinates �r2 = (l sin θ1 +
l sin θ2,−l cos θ1− l cos θ2). Take the time deriva-
tive and square to get v22 . Then you find that

T2 = 1
2m2l

2
(
θ̇21 + θ̇22 + 2θ̇1θ̇2 cos(θ1 − θ2)

)
Putting it all together, we get

L = 1
2 l

2
(
(m1 +m2)θ̇21 +m2θ̇

2
2

+ 2m2θ̇1θ̇2 cos (θ1 − θ2)
)

+ (m1 +m2)gl cos θ1 +m2glcos θ2 .

The two Euler-Lagrange equations are

0 = (m1 +m2)l2θ̈1 +m2l
2θ̈2 cos(θ1 − θ2)

+m2l
2θ̇22 sin(θ1 − θ2) + (m1 +m2)gl sin θ1

0 = m2l
2θ̈2 +m2l

2θ̈1 cos(θ1 − θ2)
−m2l

2θ̇21 sin(θ1 − θ2) +m2gl sin θ2 .

We’re clearly not going to get anywhere with-
out making some approximations: Start with
the small-angle approximation: Set sin θ = θ,
cos θ = 1, and drop all terms with more than
one power of θ:

(m1 +m2)l2θ̈1 +m2l
2θ̈2 + (m1 +m2)glθ1 = 0

m2l
2(θ̈1 + θ̈2) +m2glθ2 = 0

That’s better. Now we solve these differential
equations in the usual way: by guessing the
answer. Assume solutions of the form

θ1 = A1e
iωt

θ2 = A2e
iωt

Substitute these expressions for θ1 and θ2, and
you get

(m1 +m2)l(g − lω2)A1 −m2l
2ω2A2 = 0

−m2l
2ω2A1 +m2l(g − lω2)A2 = 0

(1)

There’s no nontrivial solution unless the deter-
minant of the coefficients is zero:

∣∣∣∣ (m1 +m2)l(g − lω2) −m2l
2ω2

−m2l
2ω2 m2l(g − lω2)

∣∣∣∣ = 0

Some notation: Define ω2
0 = g/l, and ε =

m2/m1. Then computing the determinant and
canceling some terms, we get

ε(1 + ε)
(
ω2

0 − ω2
)2 − ε2ω4 = 0

This equation has two solutions for ω2, which
we’ll call ω+ and ω−.

ω2
± = ω2

0

(
1 + ε±

√
ε(1 + ε)

)

These are the “natural frequencies” of this sys-
tem.
(b)
Calculate the interval T /2 between times for
which one or the other bob has minimum ampli-
tude of oscillation. [Hint: This is π/∆ω, where
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∆ω is the difference between the two natural an-
gular frequencies.]
Solution:
Rather than accept the hint, which greatly sim-
plifies this part of the problem, why don’t we
take this opportunity to work out the motion
completely. Then the interval T /2 will fall out.
First we figure out the amplitudes A1 and A2

that go with ω±: From equation (1) above, we
get

A±
1

A±
2

=
ε(ω2

0 − ω2
±)

εω2±
= ∓

√
ε

1 + ε

(This comes from the second equation in (1), al-
though the first one would have worked just as
well. We’ve skipped some steps in simplifying
it.) So far we haven’t made the approximation
m2 � m1 (i.e., ε � 1). Let’s use it now to say
A±

1 /A
±
2 ≈ ∓√

ε. Only the ratio of A1 to A2 is
determined by the equations of motion, so we
can pick the overall magnitude any way we want.
Let’s say the following:

A±
1 = ∓

√
ε A±

2 = 1

The most general solution to the equations of
motion will be a linear combination of the + and
− solutions:(

θ1(t)
θ2(t)

)
= Re

(
c+

(
A+

1

A+
2

)
eiω+t

)

+Re
(
c−

(
A−

1

A−
2

)
eiω−t

)
.

Let’s say that at t = 0, θ̇1 = θ̇2 = 0, and
θ1 = θ2 = θ0. Since the initial velocities are
zero, we can take c+ and c− to be real, and re-
place the complex exponentials by cosines. Then
our initial conditions say that(

(c− − c+)
√
ε

c− + c+

)
=

(
θ0
θ0

)

so c+ = 1
2θ0(1− ε−1/2) and c− = 1

2θ0(1+ ε
−1/2).

Putting it all together, we get

θ1(t) = 1
2θ0

(
(1− ε1/2) cosω+t

+ (1 + ε1/2) cosω−t
)

θ2(t) = 1
2θ0

(
(1− ε−1/2) cosω+t

+ (1 + ε−1/2) cosω−t
)
.

Now let’s return to our original goal of finding
the time interval T /2 between maximum and
minimum amplitudes of oscillation for one bob.
Let’s concentrate on θ1. At t = 0, the two terms
in the expression for θ1 are in phase with each
other. After a certain time, since ω+ �= ω−,
the two terms will be 180◦ out of phase, and the
amplitude will be minimized. This happens after
a time T /2 = π/(ω+ − ω−). Making our usual
small-ε argument, the frequency difference is

ω+ − ω−
ω0

=
√
1 + ε+

√
ε(1 + ε)

−
√

1 + ε−
√
ε(1 + ε)

≈ 1 + 1
2ε+

1
2

√
ε(1 + ε)

− 1− 1
2ε+

1
2

√
ε(1 + ε)

=
√
ε(1 + ε)

≈
√
ε .

So the time between maximum and minimum
oscillation of mass 1 is T /2 ≈ π/ω0

√
ε.

5.
Consider a linear triatomic molecule, as in the
diagram below. A mass M is connected to two
masses m, one on either side, by springs of equal
spring constant k.

(a)
Find the three natural frequencies of the linear
triatomic molecule.
Solution:
If x1, x2, x3 are the displacements of the three
atoms from their equilibrium positions, then the
equations of motion are

mẍ1 + k(x1 − x2) = 0
Mẍ2 + k(2x2 − x1 − x3) = 0

mẍ3 + k(x3 − x2) = 0
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As usual, guess that the solutions have time de-
pendence eiωt. Then there are only solutions if
the secular determinant is zero:

0 =

∣∣∣∣∣∣
k −mω2 −k 0

−k 2k −Mω2 −k
0 −k k −mω2

∣∣∣∣∣∣
= −ω2

(
Mm2ω4 − 2k(Mm+m2)ω2

+ k2(M + 2m)
)
.

This cubic equation for ω2 has three solutions:

ω2 = 0 ω2 =
k

m
ω2 =

k

Mm
(M + 2m)

(b)
One of these frequencies should be zero. To
what motion does it correspond?
Solution:
The zero-frequency solution corresponds to uni-
form translation of the molecule, with no stretch-
ing of the springs at all.

6.
In a series LC circuit, choose the charge q and
its first derivative q̇ as independent variables.
Equate the “kinetic energy” T to 1

2Lq̇
2 and

the “potential energy” U to 1
2q

2/C. Then La-
grange’s equations produce the usual differential
equation for the circuit.

In analogy with this approach, find the resonant
frequencies of the above LC circuit. Do not rely
on loop equations or any other circuit theory.
Instead, write the analogous circuit Lagrangian
and solve formally using coupled oscillator meth-
ods.
Solution:
The Lagrangian for this system is

L = 1
2L

(
q̇21 + q̇22

)
+ 1

2L
′ (q̇1 + q̇2)

2− 1
2C

(
q21 + q22

)

which gives equations of motion

(L+ L′)q̈1 + L′q̈2 + q1/C = 0
L′q̈1 + (L+ L′)q̈2 + q2/C = 0

The secular determinant is

0 =
∣∣∣∣ 1

C − (L+ L′)ω2 −L′ω2

−L′ω2 1
C − (L+ L′)ω2

∣∣∣∣
=

(
(L+ L′)ω2 − 1

C

)2

− L′2ω4 .

The solutions are

ω2 =
1
LC

ω2 =
1

(L+ 2L′)C
.

7.
Consider a thin homogeneous plate of mass M
which lies in the x1 − x2 plane with its center
at the origin. Let the length of the plate be 2A
(in the x2 direction) and let the width be 2B
(in the x1 direction). The plate is suspended
from a fixed support by four springs of equal
force constant k located at the four corners of
the plate. The plate is free to oscillate, but with
the constraint that its center must remain on the
x3 axis. Thus, there are 3 degrees of freedom:
(1) vertical motion, with the center of the plate
moving along the x3 axis; (2) a tipping motion
lengthwise, with the x1 axis serving as an axis of
rotation (choose an angle θ to describe this mo-
tion); and (3) a tipping motion sidewise, with
the x2 axis serving as an axis of rotation (choose
an angle φ to describe this motion).
(a)
Assume only small oscillations and show that the
secular equation has a double root and, hence,
that the system is degenerate.
Solution:
Let’s choose generalized coordinates as follows:
Let z be the height of the center of mass, and θ
and φ be angles of rotation about the x1 and x3
axes. Then the kinetic energy is

T = 1
2Mż

2 + 1
2I1θ̇

2 + 1
2I2φ̇

2



6

The potential energy stored in each spring is just
1
2k times the height2 of the corresponding cor-
ner of the slab. The height of the corner in the
first quadrant of the x1-x2 plane is z +Aθ −Bφ
for small θ and φ. There are similar expressions
with different + and − signs for the other three
heights, giving

V = 1
2k

(
(Aθ −Bφ+ z)2 + (Aθ +Bφ+ z)2

+ (−Aθ +Bφ+ z)2 + (−Aθ −Bφ+ z)2
)

= 2k
(
A2θ2 +B2φ2 + z2

)
.

Now set L = T − V and get the Euler-Lagrange
equations

Mz̈ + 4kz = 0

I1θ̈ + 4A2kθ = 0

I2φ̈+ 4B2kφ = 0

The secular determinant is pretty easy:

0 =

∣∣∣∣∣∣
4k −Mω2 0 0

0 4kA2 − I1ω2 0
0 0 4kB2 − I2ω2

∣∣∣∣∣∣
= (4k −Mω2)(4kA2 − I1ω2)(4kB2 − I2ω2) .

The natural frequencies are

ω2
1 = 4k/M ω2

2 = 4kA2/I1 ω2
3 = 4kB2/I2

The moments of inertia are I1 = 1
3MA

2 and
I2 = 1

3MB
2, so the last two frequencies are the

same: ω2
2 = ω2

3 = 12k/M .
(b)
Discuss the normal modes of the system.
Solution:
The normal modes associated with these three
roots of the secular equation are as follows: (1)
θ = φ = 0, z ∝ cosωt. (Vertical motion; no
twisting.) (2) φ = z = 0, θ ∝ cosωt. (Rotation
about the x1 axis.) (3) θ = z = 0, φ ∝ cosωt.
(Rotation about the x2 axis.) Of course, since
modes 2 and 3 are degenerate (i.e., have the
same frequency), any linear combination of them
could also be chosen as a normal mode.
(c)
Show that the degeneracy can be removed by
the addition to the plate of a thin bar of mass m
and length 2A which is situated (at equilibrium)

along the x2 axis. Find the new eigenfrequen-
cies of the system.
Solution:
If we add a bar of mass m along the x2 axis,
then I2 is unchanged, while I1 = 1

3 (M +m)A2.
The three natural frequencies are

ω2
1 =

4k
M +m

ω2
2 =

4kA2

I1
=

12k
M +m

ω2
3 =

4kB2

I2
=

12k
M

Since I1 �= I2, there is no degeneracy.

8.
Consider a pair of equal masses m connected to
walls by equal springs with spring constant k.
The two masses are connected to each other by
a much weaker spring with spring constant εk,
where ε � 1. Choose x1 and x2, the displace-
ments from equilibrium of the two masses, as
the generalized coordinates.

For this system, write...
(a)
...the spring constant matrix K and the mass
matrix M
Solution:
The Lagrangian for this system can be written
as:

L =
(
1
2
mẋ21 +

1
2
mẋ22

)

−
(
1
2
kx21 +

1
2
kx22 +

1
2
εk(x1 − x2)2

)

=
1
2

(
mẋ21 +mẋ

2
2

)
− 1

2
(
k(1 + ε)x21k(1 + ε)x

2
2 − 2εkx1x2

)
=

1
2
ẋ · Mẋ− 1

2
x · Kx
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where

M = m
(
1 0
0 1

)

K = k
(
1 + ε −ε
−ε 1 + ε

)

(b)
...the normal frequencies ω1 and ω2

Solution:
Normal frequencies are given by:

det
(
K − ω2M

)
= 0∣∣∣∣ k(1 + ε)−mω2 −εk

−εk k(1 + ε)−mω2

∣∣∣∣ = 0

which yields

ω2
1 =

k

m

ω2
2 =
k + 2εk
m

(c)
...the normal mode vectors ã1 and ã2 (corre-
sponding to ω1 and ω2), each expressed as a
linear combination of x1 and x2
Solution:
The normal mode vectors �a1 and �a2 are deter-
mined by the conditions

(
K − ω2

i M
)
�ai = 0

�ai · M�ai = 1

applied using each normal mode frequency in
turn. This yields:

�a1 =
1√
2m

(
1
1

)

�a2 =
1√
2m

(
1
−1

)

(d)
...the 2 × 2 matrix A which reduces M to the
unit matrix via the congruence transformation

I = AtMA ,

where I is the identity matrix
Solution:

From Eq. 12.13 in the notes, A is the matrix of
normal mode vectors:

A =
1√
2m

(
1 1
1 −1

)

(e)
...the normal coordinates Q1 and Q2 (corre-
sponding to ω1 and ω2), each expressed as a
linear combination of x1 and x2.
Solution:
From Eq. 12.15 in the notes:

�Q =
(
Q1

Q2

)
= AtM

(
x1
x2

)

=
1√
2m

(
1 1
1 −1

)
m

(
1 0
0 1

) (
x1
x2

)

=
√
m

2

(
x1 + x2
x1 − x2

)

So Q1 =
√

m
2 (x1 + x2) and Q2 =

√
m
2 (x1 − x2).


